Screen Shot 2019-08-25 at 11.11_edited.png

Nanoacademic builds simulation tools to predict the properties of next generation electronic devices. Our software is being used by researchers to reduce development costs in academic, public/private labs and industrial companies around the world.

RECENT RESEARCH

RESCU.png

THEORETICAL DESIGN OF TOPOLOGICAL HETERONANOTUBES

RESCU is used to simulate coaxial hetero-nanotubes (CNT inside BNT) and predict the existence of dissipationless conducting pathways protected by valley-topological invariance. The topological edge states follow a helical path, which hints that the nanotube may function as a nanoscale solenoid. C. Hu, V. Michaud-Rioux, W. Yao, and H. Guo, Nano Lett. 19, 4146 (2019)

RESCU2.png

DIRAC ELECTRONS IN MOIRÉ SUPERLATTICE: FROM TWO TO THREE DIMENSIONS

RESCU is used to elucidate the electronic structure of the graphene-boron nitride heterostructure (12000+ atoms). The flat-sheet system differs from the freestanding system. In the former, a so-called second-generation Dirac cone located at the boundary of the Moiré pattern Brillouin zone emerges, but not in the later. This is understood by looking at the real space representation of the wavefunctions around the Dirac cones. C. Hu, V. Michaud-Rioux, X. Kong, and H. Guo, Phys. Rev. Mater. 1, 61003 (2017).

rescupic.png

MOIRÉ IMPURITIES IN TWISTED BILAYER BLACK PHOSPHORUS: EFFECTS ON THE CARRIER MOBILITY

RESCU predicts that carrier mobility in double-layer black phosphorus depends strongly on the relative angle between the monolayers (up to ~20-fold). The Moiré pattern formed by the sheets yields so-called Moiré impurities which bind electronic carrier states. P. Kang, W.T. Zhang, V. Michaud-Rioux, X.H. Kong, C. Hu, G.H. Yu, and H. Guo, Phys. Rev. B 96, (2017).

Want to learn more about our research projects? Send us a message below.

INTERNATIONAL PARTNERS

You can be confident that our solution and distribution partners can provide you with the most advanced and world-class tools that meet your specific atomistic and quantum modeling needs. Please contact us to become our next regional partner or simply know if your area is addressed: sales@nanoacademic.com. If not, we will take care of your RFI or RFQ promptly.

 

Anyhow, let's talk soon!

We have many regional partners, our most recent one joining the Club is Impulse Technology to cover thanks to their technical and market expertise, the whole of the Indian territory:

NANOACADEMIC TECHNOLOGIES

If you have a material science problem and would like to gain insight from quantum mechanical simulations and get powerful tools to help you in your materials design, we have a common interest. Tell us about it and let's discuss how Nanoacademic can help you.

Thank you, we will in touch soon.

IMG_1718_edited.jpg